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Let B denote the unit ball in en with boundary S and let 0"( 1') be the standard
normalized measure on S(B). For fixed I ~p~ y), R~ I let BHI'(BR) (BAI'(B R))
denote the unit ball of the Hardy space H" (resp. the Bergman space A") in
B R := RB and for lEN let H R(/' p, n) (resp. A R(l, p, n) denote the class of those
functions which have the Ith radial derivative belonging to BH"(BR) (BA"(B R));
for 1=0, let HR(O,p, n):= BHI'(BR) (AR(O,p, n):= BA"(BR)). The values of
Kolmogorov, GeI'fand, and Bernstein and linear N-widths of classes H R(l, p. n) and
A R(l, p, n) in the metrics U( 0") and U( 1') (except for A R(/' p, n) in U( 0")) are found.
For all I ~p, q';;; 00, R> I the asymptotic estimates of N-widths for classes
H R(l, p, n) and A R(l, p, n) in the spaces L"( 0") and L"( v) are also obtained." 1993

Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let X be a normed linear space and A be a convex, closed, centrally
symmetric subset of X. The Kolmogorov dN, Gel'fand d N and linear bN
N-widths of a set A in X are defined by

dN(A;X):=inf sup inf Ilx-YII,
X,"I' x E AyE X,\'

dN(A; X) := inf
x'

sup IIxll,
,-"EArlY"""

bN(A; X):= inf sup IIx - ANxll,
Atli XE A

where X N (resp. X N
) runs over all N-dimensional (resp. N-codimensional)

subspaces of X and A N varies over all bounded linear operators of rank N
which map X into itself. The Bernstein N-width of A in X is defined by

bN(A; X) := sup sup{r: rB(XN+ J) c A},
XI\! ~ I
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where B( XIV + d is the unit ball of X N + I' The standard reference for dN' d N,

{)N, and bN is Pinkus [13]. For some additional information look at
the review of Tikhomirov [18]. The detailed bibliography concerning
N-widths of various classes of functions of one complex variable is given in
[13, 16, 18]; see [5, 11, 19] for the case of several complex variables.

Let B" := {z E C": Izi = (Lj~ I IZY)I/2 < I}, S" := aB", B~ := RB", S~:=
aB'~ (R> 1), U:= B\ T:= au, U R := RU, T R := au R' and let v be the
normalized Lebesgue measure in C" = ~211, v(B") = I, (J be the probability
measure on the sphere S" which is invariant with respect to orthogonal
group O(2n) (see [14]). The Hardy spaces H"(B~) (resp. the Bergman
spaces A"( B'~» consist of all functions f holomorphic in B~ which have
finite norms

II f II HP(B~) := o~~~ R (L If(r(W d(J(OriP

(resp. II f II APIB,,) :=(t
R

1.((z)I" dv(z))"")

if p<oo and Ilfllu'(B")=llfIlA'IB"):=sup{lf(z)!: zEB~} if P=CfJ. Let
us denote by BHP(B~) (resp. BAP(B~)) the closed unit ball in H"(B~)
(resp. A"( B~)).

If f is holomorphic in B~ with homogeneous polynomial expansion

(1.1 )
m=O

then the radial derivative of J is defined by

'x·,

.0fJ(z):= I mFm(z)
n1= I

(see [14]). For IE N let

'I' ,
f1t'f(~)'- " m. F (~)
• ".- n~1 (m-I)! m"

(1.2 )

be the "lth radial derivative" ofJ(cf. [2]). For fixed l,nEN, l~p~oo,

R~1 the "Hardy-Sobolev space" HR(l,p,n) (resp. the space AR(l,p,n»
consist of all functions J holomorphic in B~ for which !Jf'fE BH"(B~)

(resp. 9t'f E BA P( B~)). Some results concerning these spaces are given in
[2,8, 16].
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(1.3 )

Let alI k = (k I' ... , k n ) E 7L: be numerated in such a way that k = k(j),
Ik(j)I~lk(j+I)1 (j=0, 1,2, ... ), where as usuallkl :=k t + .. · +k". For
NEN let N':=min{mEN: Ik(m)I=/k(N)I}, R:=/k(N)/, and

&'N(C") := span {Zk: Ik I~ N, k E 7L: },

llN(C") :=span{zk(i):j=O, I, , N},

1rN(cn) := span {ZkU):j = 0, I, , N' - I },

where Zk:=Z~I ... Z~·. According to our notations 1ry(C")=lllV I(C"),
N' ~ N, Ik(N' -1)1 = N-1, and

for m, NE N.
Now letfbe given by (1.1) and let I,NEN, I<N, (X~v:=(N-/)!/N!.

Then we set

N-I ( (I Z I)2(N ml)
(GNfHz):= m~o 1- Ii Fm(z),

I-I N-t( rJ.'- (IZI)2(N-m))
(G~f)(z):= m~o Fm(z) + ~I 1- 2:Cm Ii Fm(z), (1.4)

and denote by (PNf)(z) and (P~f)(z) the right parts of (1.3) and (1.4)
after replacing there Izi by I. Let

{ ( (
171)2(N-lkUlfl) }

~N(C") := span ZkU). 1 - ~ :j = 0, I, ... , N' - I ,

{ { (
(XI ,('ZI)2/N- 1kU)/)}N'-I}

~~y(C"):= span {ZkU)}~'=o' ZkUI 1- 2:f
J Ii j=1' '

where I' is defined as N'. In the case 1=0 we set ~~(C") :=~4N(C")'

G~f:=GNJ, P~f:=PNJ, and 9fof:=f; then HR(O,p,n)=BHP(B~),

A R(O, p, n) = BA P(B~).

The method f::::; G~f is optimal in the recovery problem of the value of
the function f E H R(I, CIJ, 1) at a given point z E UR\ {O} by the Taylor
information {f(O),!,(O), ... ,f(N-)I(O)}. This fact was noted by Osipenko
[to] for 1= °and Donald J. Newman for 1= I (see Micchelli and Rivlin
[9, p. 42]); it is not difficult to verify that the same property is true for all I.

Fisher and Micchelli [6] used the method of obtaining the upper bound
for 6N (BH OC (UR),U(j.l», R>I, l~q<CIJ, which coincide withf~GNf

when J.l= II.
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For n=l, lEN the methodr~P~'Vfwas found by Babenko [1] while
solving the problem of determining the best approximation of functions
f E H R(l, CIJ, 1) by polynomials of degree at most N. This method was
applied by Taikov [17] and Pinkus [13, Chap. XIII] as well.

For 1~p~ 00, NE N let

X;(Bn
) := {.f:fE HI'(B"), Gj'lkl/(}Zk = 0, k E {k(O), k( I), , k(N' - I)}},

r;(B n
) := {.f:f E AI'(B"), of1kl/ozk = 0, k E {k(O), k( 1), , k(N' - I)} },

The main result of this paper is the following:

THEOREM. Let 1~p~ 00, R"?31, IEZ+, n, NEN, I<N. Then

dN(H R(l, p, n); U(a)) = a/~R j',' (1.5)

dN(HR(l,p,n);U(v»=a~R 'V(~~+I) IiI' (1.6)

N 2n/1', (1.7 )

and the same equalities are true for d N, lJ N, b N. Furthermore,

(a) nN(C n
) is an optimal subspace for dN(H R(l, p, n); U(a)),

dN(AR(l, p, n); U(v», lvhile ~~(en) is optimal for dN(HR(l, p, n); U(v)).

(b) X;(Bn) is an optimal subspace for dN(HR(l, p, n); U(a», while
r;(Bn

) is optimal for dN(H R(l, p, n); U(v» and dN(AR(l,p, n); U(v».

(c) P~ is an optimal operator for lJ N( H R(l, p, n); U( a» and
lJN(AR(l, p, n); U(v», while G~ is optimal for {)N(HR(l, p, n); U(v».

(d) IIN( en) is an optimal subspace for b N( H R(l, p, n); U( a»,
bN(HR(l, p, n); U(v» and bN(AR(/, p, n); U(v»).

When n = I the statements of this theorem follow from the results of
Babenko, Tikhomirov, Taikov, and Pinkus (see [13, p. 275]), except those
connected with the equality (1.7) which was proved in [13] for 1=0 only.
It should be noted as classes H R( I, p, n) and A R( I, p, n) are defined by
means of the radial (but not usual) derivative, the equalities (1.5 )-( 1.7) in
the case n = 1 differ from the corresponding ones in [13]. The theorem for
n> 1,1=0 was announced in [5].

The N-width dN lies between bNand lJ N:

and d N possesses the same property (see, e.g., [13, p. 207]). So the theorem
will be proved if we obtain upper bounds for {)N and related lower bounds
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for hN • These estimates are established in Sections 2 and 3. We use the
foHowing two well known identities:

L./(O da(O = L.n da(O 2~ r/(eiIiO dB, (1.8)

f f(z)dv(z)=2nfRr2" ldrf f(rOda(n (1.9)
B~ 0 sn

In Section 4 we obtain the asymptotic estimates of the N-widths (dN , d lV
,

tJ N , and hN ) for classes H«(l,p, n) and AR(l,p, n) in the metrics U(a) and
L '/( v) for all 1~ p, q ~ 00, R> I.

Finally, in Section 5 we compare our estimates of dN(BH f (B'J?), L'/(v»)
with those recently obtained by Zakharyuta [19].

2. UPPER BOUNDS FOR tJ N

For 0 < P < 1, t E IR let

x

K,. N(P, t) := LX~ + 2 I
m=/V+I

F/ , -p'" LX", cos(N - m) t,

where IE 71 +' N EN, 1< N. It is known, that

(2.1 )

for all O<p~ 1, tEIR (see [1; 13, p. 251J).
Let f be holomorphic in B~ and 0 < p < 1, (E S"; as in [14],/" and II"

are defined by Ip(z) :=I(pz), Z E B~/,) and I",(A) :=I,,(AO, }. E U«i". Then

A' In (r)" ,J;J(Z)-(G~J;')(Z)=2nn R exp(i(l-N)(e-q»)

x K,.N(r/R, e-cp)I~:!(Rem)de, (2.2)

where z=).(, A= rei'P, O<r~R, (ESn (cf. [13, p. 254]).
It is a known fact (e.g., [14]) that for any function IE HP( B'J?) there is

a function I* such that I*(R() = lim, ~ R _ I(r() a.e. in sn and III II HP(B~) =
IIf*(R· )lIu(u)' Further iff E HP(B'k) thenf(RO :=f*(R() for a.e. 'E sn.

PROPOSITION 2.1. Let 1~p ~ 00, R?: 1, IE 71 +' n, N EN, 1< N.

(a) IffEHR(l,p,n) then

, , - iii
IIf- P Nfll V(a) ~ (1F/R (2.3 )
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(2.4 )

(b) III E A R(l, p, n) then

11/-P~/llul,.)~'Y.~R N
1211/1' I (2.5 )

Proof Suppose that f is holomorphic in B'~ and let \ ~p < ex),
0< p < \. Note that

for all ,I.E U Rip' (E S". It follows from (2.\) and (2.2) that

where ). = rei<p, 0 < r ~ R. Thus, since II K(rjR, . )11 L'IIt. It) = IX~, identity (1.8)
with the well known property of the convolution

Ilh * gil UI- It. It) ~ Ilhl! LPI It. It) • II gll/.'I - It. It)

gives

where ,I.E (jR'

Let IE HR(l, p, n). It follows from [8] that there is a q, p ~ q ~ 00, such
that H R(l, p, n) c Hq(B~). Hence for our function I

for all AE TR (see [14, Sect. 5.6.6]). In particular, the case A= R = 1 is
possible. If AE UR, (E S", then by continuity lim p_ tfp().O =1(,10. Also, it
is easy to see that

lim G~/p=G~f
IJ-l·-
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But then

and, since 119l'l'p(R')IILP(1}~ 1, inequality (2.6) implies

Ilfo.·) - (G~f)(Jc')11 U'(,,) ~ rI.~ C~Ir·

189

(2.7)

This immediately gives (2.3) by setting A= 1 and substituting P~vf for
G~f If Jc=r, O<r<R, then the identity (1.9) with the inequality (2.7)
gives (2.4).

Thus part (a) is established for 1~p < 00.

Now let f E A R(l, p, n). It follows from (2.6) that

But by definition (G~fp)(·)=(P~fp)(') on S" and identity (1.9) implies

II f - P~f II ~(V) ~ 2n(rI.~R- NV ( p2n- I dp LJ0l~r(RPOII' da(O

=2n(rI.~)1'R- NI'- 2n fR

r 2n - 1 drf 1·~/r(r()ll'da(O
o 5;"

=((1,1_)1' R- Np-2n 111J/'l' II I'
N AP(B~)'

i.e., part (b) is proved for 1~p < 00. In the case p = 00, inequalities
(2.3)--(2.5) coincide and obviously follow from (2.2).

The proof is complete.

COROLLARY 2.2. If 1~p ~ 00, R ~ 1, IE 7L +, n, N EN, 1< N, then

bN(HR(l,p,n);U(a»~rI.~R-N, (2.8)

bN(HR(l, p, n); U(v) ~ cx.~R-N (~~+ 1) lip (2.9)

bN(AR(l,p, n); U(v» ~(1,~R-N--2nip (2.10)

This is a direct consequence of the preceding proposition and the
definition of fJ N'
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3. PROOF OF THE THEOREM

In this section the lower bounds for hN inverse to (2.8 )-(2.10) are derived
and this completes the proof of the above formulated theorem.

PROPOSITION 3.1. Let 0 <p ~ 00, R> I, n, N EN. If PNE g'lN(C n
), then

II PN(R· )11 /.P(O") ~ RN II PNil Iff0")'

(
NP ) lip

IlP/Ii II U(", ~ ~ + 1 liPN 111/'(11'

lIPN(R· )11 ur,) ~ R''1 + 2n/1' II PNil U(I')'

(3.1 )

(3.2)

(3.3 )

Proof For n = 1 inequality (3.1) is well known (see, e.g., [13, p. 252]).
Let PNE &'N(I["), 0 < P < 00, n> I. It is evident that PN( ,1,0 for every fixed
( in sn is polynomial of degree N of the variable ). in iC. Thus, the one
dimensional variant of inequality (3.1) gives

for all (E S. Now, by the identity (1.8),

LIPN(R()II' da(() = Lda(() 2
1
n rn IPN(ReiOOI I' de

~ RNI' f da(()~ r 1P'I(e iOOII' de
s 2n. 1t

That is, (3.1) holds for each P, 0 < P < 00. Also it is easy to see that for
every 0 < r < 1

rNI' f IPN(Oll'da(O~f IPN(r(Wda(O,
s s

and the identity (1.9) gives (3.2), (3.3). The case p = Cf) is established by
passing to the limit as pi 00.

The proof of proposition is finished.
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Remark. For p = 00, inequality (3.1) represents the known Bernstein
Walsh inequality for a ball (see [15, p. 102]).

If QNE 9i'N(c 1), R > 0, I,;;; P < 00, then by the well-known Bernstein
inequality

and IIQ~II("(TR)';;;(N/R)IIQNllc"(TR)' (For a simple proof, see for instance
[13, p. 252]).

PROPOSITION 3.2. Let PN E 9 N (C n
), R > 0, 1 ,;;; p ~ 00, f, n, N EN, f < N.

Then

(3.5 )

and

(3.6)

Proof It is sufficient to consider the case I ~p < 00. For ), E C, (E sn let
PN,U):= PNUo. From the definition of the fth radial derivative (see (1.2»)
it follows that

.'X'PNO·O = A'P~t().).

Hence, applying (3.4) to P N;; yields

Combining this with the identity (1.8), we obtain

II.'X'PN(R.)/I V(n)';;; (a~)-) /lPN(R·)11 VIal'

That is, (3.5) holds. Now by (1.9) and (3.5) we get

f 1.'X'PN(zW dv(z)=2nr r 2n
-

1 dr f 19l'PN(r(W da(O
B~ 0 sn

,;;; 2n(a~) -p JR r 2n - 1 dr J IPN(r(W da(O
o sn

which establishes the proposition.

640'75/2-6
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COROLLARY 3.3. Ifl ~p~oc, R~I, lEZ+, n, NEN, l<N, then

hN(HR(/,p,n);U(a»)~(J.~R Fi (3.7 )

(3.9)

(3.8 )(
N ) lip

hN(HR(/' p, n); U(I')) ~ ::t.~R ;V' ~n + I

hN(A R(/, p, n); U(I'» ~ a~;yR Fi 2"lp

Indeed, according to (3.1) and (3.5), if

PNEnN(C"), IIPNllu(rr)~::t.I;yR N

then PN E H R(/' p, n). That is, (3.7) holds. Also, it is easy to see that
Propositions 3.1 and 3.2 imply the inequalities (3.8) and (3.9).

Proof of the Theorem. As noted in Section I, hN~ dN~ (jN and hN~
d N

~ (j N are always true. That is why the required equalities for N-widths
are derived from Corollaries 2.2 and 3.3. Now parts (a), (c), (d) of the
theorem come out from the methods of proofs of these corollaries. Part (b)
for dN(H R(/, p, n); Uta»~ follows from the fact that

sup{ II fII U,rr):f E X;(B")} = sup{ II f - P~fll U\rr):f E X;(B")} ~ alFiR ;v'.

The optimality of the subspaces Y;(B/I) for dN(HR(l,p, n); U(v» and
dN(A R(l, p, n); U( 1'») is likewise established.

This completes the proof of the theorem.

4. SOME ASYMPTOTIC ESTIMATES

For n = t the asymptotic estimates for the N-widths (dN, d N, (jN and hN)
of the classes H R(/' p, n) and A R(/, p, n) in the metrics U(a) and U( 1') for
all I ~ p, q ~ oc, R> I come out from the result of [4]. These estimates
will now be extended to the multidimensional case.

We recall that, if x N > 0 and Y N > 0 for all N E N then the notation
XNXYN means that there exist positive constants C1 and e2, independent
of N, for which C))' N~ X N~ C2Y N for all N sufficiently large.

PROPOSlTION 4.1. Let 1~p, q ~ 00, R> 1, IE Z +, n EN. Then

dN(A R(/, p, n); Lq(v» x N- ' +lip liqR ,'I (4.1)

dN(A R(l, p, n); U(a» x N -1+ lipR - N, (4.2)

dN(HR(l,p,n);Lq(v»xN 1 IiqR N (4.3)

dN(H R(/, p, n); Uta»~ x N-'R- N, (4.4)

and the same relations are true for d N, {) N' hN'
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Proof If f is holomorphic in B~ with homogeneous expansion (1.1),
then

). E UR' , E S", (4.5 )

where

Y,'

f,(A):= f(AO = I cmUd Am.
m=O

For m > /, 0 < r < R,

Let f E AR(l, p, n), 1~p < 00. Holder's inequality gives

IcmUdl ~ <, (;n L, 1.'~/r(rei<901 pde) lip

and (1.8) and (1.9) imply that

IcmUdl rm ~ O(~ c;: + 1YiP R m - 2..ip 11;~/r II APIB'ki' (4.6)

Let NE N, N>/, 1~q< 00. Since II.gjl'fIlAP(B':<)~ I, by (1.9), (4.5), and
(4.6) it follows that

II f - ~~: Fm II :q/\,) = 2n ( r
2
" - I dr CI m~,v Fm(rO Iqda(O

~C3r ( I m-I+liPR-mrm)q r 2n - 1dr
o m=N

~c4N Iq+q/p IR Nq.

Also, using (1.8), (4.5), and (4.6), it is easy to see that

II
f - NL 1 Fm II ~ c5 N 1+ lip R N

m=O L"«T}

for all 1~ q ~ 00. Hence,

(;N(AR(l, p, n); U(v)) ~ c6 N 1+ lip l/qR N

(;N(AR(l,p,n);Lq(a))~C7NI+liPR N

(4.7)

(4.8)
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Let QE Y'N(C"), 1 ~p, q ~ 00. We show that for every R> 1 there is a
constant c8 , independent of Rand Q, such that

IIQIIAP(B~,~c8N l/pRN IIQII15(fTI'

If Q = L:~~o Qm is the homogeneous expansion of Q and

(4.9)

N

Q,(A) :=Q(AO= L c",(Q,pm,
111=0

then by (4.5)

Qm()'() = )."'cm(Q,).

By the formula for the Taylor's coefficients

A. E C, (E S",

Now, by Holder's inequality and the identity (1.8)

Icm(QJI ~ IIQII 151fT)

for all I ~ q ~ 00. But then

IIQII~p(B~,=2n(r
2
" 1 dr Ln I,,~o Qm(rO /1' daW

~C<lIIQII~."(fT) ( C,,~o r
m

) r
2
" 1 dr

~ cioN 1RNp IIQII ~P(fTl'

That is, (4.9) holds.
Now let P'IEIlN+l(C")' Then by (4.9) and Propositions 3.1 and 3.2,

II'~'PN II APIB~I ~ ('II RNN 1/1' II·iJl1P N 1I/"lfT) ~ C12 RNN' 1/1' IIP N II 151fT 1

~('I3RNNI 1/1'+ 1/" IIPNII!."I")'

It follows that

bN(AR(l,p,n); L"(I'»)~cI4N 1+1/1' I/"R .N

bN(AR(l, p, n); L"(a» ~ ('lsN -1+ l/pR iV,

which jointly with (4.7) and (4.8) give (4.1) and (4.2). Relations (4.3) and
(4.4) are proved by the same method.

The proof is finished.
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Remark. If 1~q~p~ 00, R~ 1, NE 1'\1, then

195

and both equalities are true for d''''' and bN (see [5, 12J). For p<q exact
values are known only for the N-widths (d N and bN ) of BH 2(U R ) in C(T)
(see [II J).

5. CONCLUDING NOTES

Let BH x (Q) denote the class of those functionsfwhich are holomorphic
in the domain Q c (:" and satisfy If I ~ I therein. Let K be a compact
subset ofQ. The history of the widths for the class BHXo(Q) in C(K) in the
case n=1 can be found in [I8J (see also [13, p.276J). For n>l,
Zakharyuta [19 J has recently got the asymptotic formula

(
n' )1/"

log d,v(BHX(Q), C(K)) ~ -2n: C(K: Q) N I/" (n ->x), (5.1 )

where compact K c Q is subjected to some conditions of regularity and
C(K, Q) is the capacity of K related to Q. Here the notation X N ~ YN

(N->oo) means that limN~x (XN!YN) = 1. The proof of formula (5.1) is
obtained by extension of the methods of the paper [20J to the multidimen
sional case using complex potential theory.

In the case when Q = GR is a canonical neighbourhood of a compact K
in (:", formula (5.1) assumes the form

(R> I, N ->X)) (5.2)

and can be derived from the multivariate Bernstein-Walsh theorem (see,
e.g., [15, Chap. 3J).

For p= 00, /=0, equality (1.5) gives

dN(BHX(B~), C(B") = R N (5.3)

Formula (5.3) is in agreement with (5.1) and (5.2), as N~ (n! N)I/"
(N -> 00) and c(1i", B~) = (2n:!log R)". By Proposition 4.1

dN(BHX)(B~),U(v)xN-I/qR N (5.4)

for 1 ~ q < 00.
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Prohlem. Comparing (5.4) with (5.1) and (5.3) it is natural to look for
conditions on K and Q, K c Q c e", where

(5.5 )

with 1~ q ~ (f), .0( := 2][/(C(K, Q)) Ii". If n = 1 and the boundary ciK consists
of a finite number of disjoint curves of bounded rotation, then formula
(5.5) can be proved (at least in case q = CfJ) by the methods considered in
[3, 7]. In both methods upper bounds are received by some modifications
of the classical Faber approximation. It is thus natural to ask which
methods will be used in the multidimensional case.
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