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Let B denote the unit ball in C” with boundary § and let o(v) be the standard
normalized measure on S(B). For fixed 1 <p< oo, R21 let BH"(By) (BAT(BR))
denote the unit ball of the Hardy space H” (resp. the Bergman space 4”) in
Br:=RB and for fe N let Hgll, p,n) (resp. Ag(/, p, n}) denote the class of those
functions which have the /th radial derivative belonging to BH”(Bg) (BA"(B,));
for (=0, let Hg0,p,n):=BH"(Bg) (A0, p, n):=BA?(Bg)). The values of
Kolmogorov, Gel'fand, and Bernstein and linear N-widths of classes H g{/, p, n) and
Ag(l, p, n) in the metrics L”(g) and L”(v} (except for 4 g{/, p, n) in L”(s)) are found.
For all 1<p, ¢g<o0, R>1 the asymptotic estimates of N-widths for classes
Hg({, p, n) and A 4(l, p, n) in the spaces LYc) and L4(v) are also obtained. " 1993

Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let X be a normed linear space and 4 be a convex, closed, centrally
symmetric subset of X. The Kolmogorov d,, Gelfand d” and linear &,
N-widths of a set 4 in X are defined by

dy(A; X):=inf sup inf ||x—y|, dMA; X):=inf sup x|,
Xy XeAd yeXy XY xednxV
du(A; Xy :=inf sup |lx — A,x]l,
Ax xe A

where X, (resp. X") runs over all N-dimensional (resp. N-codimensional)
subspaces of X and A, varies over all bounded linear operators of rank N
which map X into itself. The Bernstein N-width of 4 in X is defined by

by(A; X) :=sup sup{rirB(Xy,,) =4},

Xy
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where B(X ., () is the unit ball of X, , ,. The standard reference for dy, d"”,
dy, and b, is Pinkus [13]. For some additional information look at
the review of Tikhomirov [18]. The detailed bibliography concerning
N-widths of various classes of functions of one complex variable is given in
[13,16,18]; see [5, 11, 19] for the case of several complex variables.

Let B" :={zeC":|z| = ():,,l Iz;17)'? <1}, S":=0B", By :=RB", S :=
0B (R>1), U:=8B' T:=0U, U, =RU, Tr:=0Ug, and let v be the
normalized Lebesgue measure in C" =R, v(B8")= 1, ¢ be the probability
measure on the sphere 8" which is invariant with respect to orthogonal
group O(2n) (see [14]). The Hardy spaces H”(B%) (resp. the Bergman
spaces A”(B’;)) consist of all functions f holomorphic in B which have
finite norms

1 f sy = sup ( I If(rC)I”da(C)> |

O<r<R
l/“‘,’
(resp. (¥4 ”AT'(B’I’{) :=(fa" |f(2)|”d\'(z)) )

if p<oo and £l sy = 1S | aeian) =Sup{|f(2)|: z€ By} if p=oco0. Let
us denote by BH”(B"f (resp. BA”fB',’J) the closed unit ball in H”(B%)
(resp. A7(B%)).

If /'is holomorphic in B% with homogeneous polynomial expansion

flzy= 3 F,l2), zeB, (1.1)

then the radial derivative of f is defined by

o

Rf(z):= Y mF,(z)

m=1

(see [147]). For /e N let

()= 3

m={

—'T)!FM(Z) (12)

be the “/th radial derivative” of f (cf. [2]). For fixed /,neN, 1<p< w0,
R>1 the “Hardy-Sobolev space” Hg(/, p, n) (resp. the space A,(/, p, n))
consist of all functions f holomorphic in B for which #fe BH?(B%)
(resp. #'f € BA"(B%)). Some results concerning these spaces are given in
{2,8,16].
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Let all k=(k,,...,k,)€Z", be numerated in such a way that k =k(}),
k()H<tk(j+ 1) (j=0,1,2,..), where as usual |k|:=k,+ --- +k,. For
NeN let N :=min{meN: |k(m)| = [k(N)|}, N :=[k(N)|, and

Py(C") :=span{z*: |k| <N, keZ" },
M(C") :=span{z*":j=0,1,., N},
p(C") :=span{z*):j=0,1, N’—l},

where z* ;—:’:'.. Accordlng to our notations n (C")=1I, (C"),
N KN, Ik(N’—l)l— —1, and
~ . -1
Fem i (n+m )SNS(n+m>—1
n n
for m, NeN.

Now let f be given by (1.1) and let , NeN, I<N, o, :=(N—1)yN!.
Then we set

N -1 ll AN - m)
G.’Vf)(z):: Z <1—<R) )Fm(z}~ (13)

m=0

G )z) = Z F,(z)+ z ( g_z_L@_(IZl)Z(Nm))F ) (1.4)
N A R m\<«Js .

and denote by (P, f)(z) and (P’ f)(z) the right parts of (1.3) and (1.4)
after replacing there |z| by 1. Let

) |z 2N - (k)
sueyi=span {20 (1= ()7 )0 v,
! KAVE i ahm [zl 2R~ kYN -1
G (C") :=span< {z (j)},i=0’ ok (l——l—l(—) } },
; R i=r

where !’ is defined as N'. In the case /=0 we set 4%(C"):=%(C"),
GSf:=Gunf. PSf:=Pyf, and R°f:=f; then Hg(0, p,n)= BH"(B}),

Ag(0, p, n)= BA?(BY).

The method f~ Gﬁv /'is optimal in the recovery problem of the value of
the function fe Hg(/, o0, 1) at a given point ze Ug\{0} by the Taylor
information {f(0), f'(0), ... f¥~"(0)}. This fact was noted by Osipenko
[10] for /=0 and Donald J. Newman for /=1 (see Micchelli and Rivlin
[9, p. 42]); it is not difficult to verify that the same property is true for all /.

Fisher and Micchelli [6] used the method of obtaining the upper bound
for 8 (BH™(Upg), LY(pn)), R>1, 1 <g< o0, which coincide with G, f
when p=v.
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For n=1, /e N the method f~ P/, f was found by Babenko [1] while
solving the problem of determining the best approximation of functions
fe Hgll, 20, 1) by polynomials of degree at most N. This method was
applied by Taikov [17] and Pinkus (13, Chap. XII1] as well.

For 1<p< oo, NeN let

X¥(B") = {f:f e H'(B"), of W/0=* =0, k € {k(0), k(1), ... k(N — 1)},
Y¥(B") = {f:f € A7(B"), fW)/0z* =0, k € [k(0), k(1), ... kK(N'— 1)} },

The main result of this paper is the following:

THEOREM. Let 1<p< o0, R=1,1eZ,, n,NeN, I<N. Then

dy(H(l p,n); L"(0))=ayR *, (1.5)
_ N lip

dN(HR(l,p,n);Ln(v))=a’NR N(%;+l> , (1.6)

du(Agll, p,n); L7(v)) =o' R ¥ 20, (1.7)

and the same equalities are true for d, 8, by. Furthermore,

(a) = (C") is an optimal subspace for dy(Hg(l, p,n); L?(s)),
dy(A (L p, n); LP(v)), while 4'(C") is optimal for dy(H g(l, p, n); L*(v)).

(b) XJ(B") is an optimal subspace for d”(H(l, p, n); L?(c)), while
Y7(B") is optimal for d™(H (I, p, n); L¥(v)) and d™(A (I, p, n); L*(v)).

(¢) P is an optimal operator for Sy(Hg(l, p,n), Lf(c)) and
Sn(AR(L, p, n); L7(v)), while G, is optimal for & (Hg(l, p, n); L7(v)).

(d)y M4(C") is an optimal subspace for by(Hg(l, p,n);, L7(0)),
bn(Hgtl, p, n}; L¥(v)) and b (AR, p, n); L7(v)).

When n=1 the statements of this theorem follow from the results of
Babenko, Tikhomirov, Taikov, and Pinkus (see [13, p. 275]), except those
connected with the equality (1.7) which was proved in [13] for /=0 only.
It should be noted as classes Hg(/, p, n) and Ag(/, p, n) are defined by
means of the radial (but not usual) derivative, the equalities (1.5)-(1.7) in
the case n =1 differ from the corresponding ones in [13]. The theorem for
n>1, =0 was announced in {5].

The N-width d lies between b, and d y:

bp(A; X)<dy(A4; X)<Op(A4; X)

and d" possesses the same property (see, e.g., [ 13, p. 207]). So the theorem
will be proved if we obtain upper bounds for ¢, and related lower bounds
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for by. These estimates are established in Sections 2 and 3. We use the
following two well known identities:

[ 10dw@=] o [ fea (18)

R
f f(z)dv(z)=2nf P U de [ f0r0) do(0), (1.9)
B 0 sn

In Section 4 we obtain the asymptotic estimates of the N-widths (d, d 7,
d, and b)) for classes H (!, p, n) and A g(/, p, n) in the metrics LY(c) and
Lv)forall 1<p, g<oc, R>1.

Finally, in Section 5 we compare our estimates of dy(BH “ (B%), LY(v))
with those recently obtained by Zakharyuta [197].

2. UpPER BOUNDS FOR d

ForO<p<lt, teR let

e

Koawp,)i=ay+2 Y p™ Sal cos(N—m)t,

m
m=N+1

where le Z,, NeN, I< N. It is known, that
K, wlp, )20 2.1

foral 0<p<1, teR (see [1; 13, p. 2517).
Let f be holomorphic in B} and 0<p <1, (e S" as in [14], f, and f,.
are defined by f,(z) :=f(pz), z€ By, and f,:(4) :=f,(A{), A€ Ug,,. Then

,{I Nt -
=@t =5 | (%) explill— N )0~ )
x K, (r/R, @ — @) f)(Re™®) d6, (2.2)

where z=A{, A=re*, 0<r<R, {e8" (cf. [13, p. 254]).
It is a known fact (e.g.,, [14]) that for any function f € H”(B%) there is
a function f* such that f*(R{)=1lim, _,_f(r{)ae. in S"and || | B =
| f*(R ‘)| 1r(s)- Further if fe€ H?(B%) then f(R{) :=f*(R{) for ae. {e 5"
PROPOSITION 2.1. Let 1<p< o, R=1,1eZ,,n NeN, I<N.

(@) If fe Hg(l, p,n) then

”f— Pﬁvf’!Lp(”)ga/,vR7N (23)
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and
: N v
=G f W oy <a'sR 7 (’;_H) . (2.4)
(b) UfEAR(ls P’”) Ihen
|~ Py St R & 200, (2.5)

Proof. Suppose that f is holomorphic in B} and let 1<p<oc,
0 < p < 1. Note that

RY ()= 2 0(2)

for all Ae Ug,,, {€ 8" It follows from (2.1) and (2.2) that

1100 = (@A £, )07 do(D)
~Np 1 3
<(%) | (ZJ K (/R © = ) |, (Re“O) d@) da(0),

where 2=re’, 0 <r < R. Thus, since ||K(r/R, )| .1, . 5 ) =0, identity (1.8)
with the well known property of the convolution

“h *g" LP( - n‘n)s “h”Lﬂ( non)’ ”g”l,H—n,n) (hELp,gE Ll)
gives

- N
1) = (G S WA oy ' (%’—) VR R s (26)

where Ae Ug.
Let fe Hg(l, p, n). It follows from [8] that there is a ¢, p < ¢ < oc, such
that H(/, p, n) c H(B%). Hence for our function f

im | f(A-)~f(A ) gy =0

p—1-

for all Ae T (see [14, Sect. 5.6.6]). In particular, the case A1=R=1 is
possible. If 1e Ug, {€ 8", then by continuity lim, | £,(A{) =f(A{). Also, it
is easy to see that

lim G\ f, =G/

p—1-
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But then

hm 1fo(A) = Gy f AN ooy = 1S (A) = (G fNAMN 11y

and, since ||9?’fp(R~)|| 1710y < 1, inequality (2.6) implies

1S = (G SN iy < s ('R') 2.7)

This immediately gives (2.3) by setting A=1 and substituting P’ f for
G'.f. If A=r, 0<r<R, then the identity (1.9) with the inequality (2.7)
gives (2.4).

Thus part (a) is established for 1 <p < c0.

Now let fe Ag({, p, n). It follows from (2.6) that

[ 17D~ (G S, )N do() < (R ) | 1A (Rp" do(0)

But by definition (G f,)(-)= (P} f,)(-) on §” and identity (1.9} implies
1~ P Wy <205 R [ ¥ dp [ AFRODII do)

=2n(a’ﬁ)”R*N""'2"jo Pt | A do )

=(alg)? R RSV,

AI'(B )?
ie, part (b) is proved for 1<p<oo. In the case p=o0, inequalities
(2.3)-(2.5) coincide and obviously follow from (2.2).

The proof is complete.

COROLLARY 22. If1<p<o,R>1,leZ_,n NeN, <N, then

Sm(Hg(l, p,n); L(6)) <afR ¥, (2.8)
_ /N - Lip

On(H gL, p, n); LP(v)) < oc’NR*N (1;_n+ 1) , (2.9)

Sm(Ag(l p,n); L7(v))<alyR-N-2r (2.10)

This is a direct consequence of the preceding proposition and the
definition of & .
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3. PROOF OF THE THEOREM

In this section the lower bounds for b, inverse to (2.8)-(2.10) are derived
and this completes the proof of the above formulated theorem.

PROPOSITION 3.1. Let O<p<ou, R>1,n, NeN. If P, e P(C"), then

1PARM 1reo < R* 1Pl s 3.1)
N[) 1/p

TP (5;+ 1) T (32)

FPAR 1riey  RY 27 1Pyl s (33)

Proof. For n=1 inequality (3.1) is well known (see, e.g., [ 13, p. 252]).
Let Pye A(C"), 0<p<co, n>1. It is evident that P,(A) for every fixed
{ in 8" is polynomial of degree N of the variable A in C. Thus, the one-
dimensional variant of inequality (3.1) gives

1 n Np

. R
S0\ P <
27 | IPMR )N 40 <

— | 1Pue” DI dB
for all {e S. Now, by the identity (1.8),
NP v' 1 g ey p
J 1PMRON do@)= [ do(D)5- [ 1Pu(Re0)I" dB
, 1 ¢m ‘
N Y i r
<RV [ doll) 5 [ 1Pu(e 0" a0

= R [ |PA(C)I” do(?),
S

That is, (3.1) holds for each p, 0 <p < 0. Also it is easy to see that for
every 0<r<1

P [ APMOIT do(0)< [ IPAID)I” dot0),
s s
[ 1PW(RAO” da(@) < RY [ [PArO)N” dotd)

and the identity (1.9) gives (3.2), (3.3). The case p= o0 is established by
passing to the limit as p T co.
The proof of proposition is finished.
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Remark. For p= oo, inequality (3.1) represents the known Bernstein-
Walsh inequality for a ball (see [15, p. 102]).

If Qve?(C"), R>0, 1<p<oo, then by the well-known Bernstein
inequality

L ) 0y » E pi " Wy »
EE J.,;,[‘QN(R"()‘ d@S(R> 7 JileN(Re )" d@ (3.4)

and |1Qnlciry S(N/RY Qw7 (For a simple proof, see for instance
(13, p. 252]).

PrROPOSITION 3.2. Let PoeZ(C"), R>0,1<p<coo, , n, NeN, I<N.
Then

”'Q?IPN ” HMN B

R)g(all\/)ﬁl ”PN” HI'qB’,'?) (35)

and

1Pl anany < (@) ™" 1P anary- (3.6)

R

Proof. It is sufficient to consider the case 1 <p< 0. For AeC, {e 5" let
P (A) := Pp(AL). From the definition of the /th radial derivative (see (1.2))
it follows that

AP W(AL) = A'PUA).

Hence, applying (3.4) to P, yields

Iy—=r on
CLZ 7 P y(re)1? do.

= 7 1P reD) a0 <
2 J _,
Combining this with the identity (1.8), we obtain
IR P AR ooy < (@)~ IPMBRM 1(s)-
That is, (3.5) holds. Now by (1.9) and (3.5) we get
R
o

j mfp,,(z)ypdv(z):znj rz""'drf |RP (0N do(l)
B sn
R
<2m(al) 7 [V | PN do()
0 sn

=(h) [ 1PN vz,
B

R

which establishes the proposition.

640/75,2-6
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CoroLLARY 3.3. If1<p<oc, R21,1eZ,,n NeN,I<N, then

bulH g(l, p,n); L7(a)) = a'sR ¥, (3.7)
buH oll, p, n); L7(v)) > 25 R ’”([—;;+1) , (38)
balAg(l, p, n); LP(V))ZOCT;,R N, (3.9)

Indeed, according to (3.1) and (3.5), if
PNE”N(C")’ “PN“[/’(,,)gﬁ{,vR N,

then Pye Hy(l, p,n). That is, (3.7) holds. Also, it is easy to see that
Propositions 3.1 and 3.2 imply the inequalities (3.8) and (3.9).

Proof of the Theorem. As noted in Section |, by <d, <dy and by <
d" < &, are always true. That is why the required equalities for N-widths
are derived from Corollaries 2.2 and 3.3. Now parts (a), (c), (d) of the
theorem come out from the methods of proofs of these corollaries. Part (b)
for d™(Hg(l, p, n); L7(c)) follows from the fact that

sup{ |l f| L"'(a):fEX,I;V(B")} =supi{|lf~ Pl/vfuz,ﬂla)ife X,IY(B”)} SalﬁR Y.

The optimality of the subspaces Y (B") for d¥(H,(l, p, n); L7(v)) and
d™ (AR, p,n); L*(v)) is likewise established.
This completes the proof of the theorem.

4. SOME ASYMPTOTIC ESTIMATES

For n=1 the asymptotic estimates for the N-widths (dy, 4%, 5, and by)
of the classes Hg(/, p, n) and A (!, p, n) in the metrics L%(a) and L9(v) for
all 1<p, g< oo, R>1 come out from the result of [4]. These estimates
will now be extended to the multidimensional case.

We recall that, if x,>0 and y, >0 for all NeN then the notation
Xy < yy means that there exist positive constants ¢, and c,, independent
of N, for which ¢, yy < xy<c,yy for all N sufficiently large.

PROPOSITION 4.1. Let 1<p, g< 0, R>1,leZ,, neN. Then

du(Agll, p, n), L))y < N~/+ Ve Vap ¥, (4.1)
duA gl p,n); Léa))y< N1+ R-¥ (4.2)
d(Hp(l, p,n); L4(v))< N ' "R~ (4.3)
dy(Hg(l, p,n); L%6)) =< N 'R~ %, (4.4)

and the same relations are true for d™, d, by.
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Proof. 1f f is holomorphic in B% with homogeneous expansion (1.1},

then

F ()= A"c(f:), AeUg, (€87, {4.5)

where
o

LAA) =30 = ¥ e (f) A

m=0

For m>1[, 0<r<R,
/

al, 0 fO0) . al ¢ AYGD)
)= —_— = A.
Cm(fs) 27[1 J\T, im— I+1 dA 27.“ J.T, Am+l d

Let f e Ag(l, p, n), 1 <p < 0. Holder's inequality gives

1 , e
lenlf) <t (57; | |.9?ff(re'95)|"d@)
T,

and (1.8) and (1.9) imply that

m Up o
len( £l P <, (5§+ 1) R ™2 \RY gy (46)

Let NeN, N>/ 1 £ g < o0. Since 1(.9?’1’1[,,”37(@ 1, by (1.9), (4.5), and
(4.6) it follows that

-2,

S F(r0)| do())

1
=2n'[ rz"”'drj
0 5"
n =

1 x 4
< c; j < Z m I+ l,v‘pR - mrm) rln -1 dr
0 .

m=N
<ceyN gtap- 1 p Ny

L9(v)

Also, using (1.8), (4.5), and (4.6), it is easy to see that

N1
ﬂf— Y Fn| <cN tUR A
m=0 Lo}
for all 1 € ¢ < oc. Hence,
S (Ag(l, p,n); LIV)) < cgN 1P -14R N (4.7)
(4.8)

Sn(Ag(l, p,n); LY6))<c, N 1HVrR ¥,
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Let Qe ZW(C"), L <p, g<oc. We show that for every R> | there is a
constant cg, independent of R and @, such that

101 arsy < sV PR¥ Q1 o) (49)

IfQ=%"_,0,, is the homogeneous expansion of Q and

N

Q:(4):=00)= ) Q)4  AeC, (es"

m=0
then by (4.5)
Qm()'é’) = ;mem( Q:)

By the formula for the Taylor’s coefficients

le (O <21~n f |Q(e0)| ab.

Now, by Hdlder's inequality and the identity (1.8)
'Cm(Q; )I S ”Q ” L4(a)

for all 1 <g< co. But then

R N P
1QV g =20 7 e [ | ¥ QD) dod)
" m=10
R N
<colQU, [ ()
0 m=0
<N R QIT,

That is, (4.9) holds.
Now let Pye T, , (C"). Then by (4.9) and Propositions 3.1 and 3.2,

] N ip il T~ ;
|| PNHA,,(B,.,gc-”RNN Ve | #P H”(a'sclzRNNl Y NP I e

R
SR P VP )
It follows that
(ARl pon); LYV)) 201N 1HVP - VeR N
bulAgll pon); L4c))=c\sN V"RV,

which jointly with (4.7) and (4.8) give (4.1) and (4.2). Relations (4.3) and
(4.4) are proved by the same method.
The proof is finished.
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Remark. If1<g<p<o, R21, NeN, then

du(BH?(Ug), L%(c)) = R-",  du(BH?(Uy), LY(v)) = R~ ("—2& 1)7

and both equalities are true for d" and d, (see [5, 12]). For p < ¢ exact
values are known only for the N-widths (d" and &) of BH?*(Ug) in C(T)
(see [11]).

5. CONCLUDING NOTES

Let BH *(£2) denote the class of those functions f which are holomorphic
in the domain < C” and satisfy | /| <1 therein. Let K be a compact
subset of Q. The history of the widths for the class BH *(22) in C(K) in the
case n=1 can be found in [I8] (see also [13, p.276]). For n>1,
Zakharyuta [19] has recently got the asymptotic formula

n!
C(K, Q)

tin
logd,V(BHI(Q),C(K))~—2n< ) N  (n>o),  (5.1)

where compact K< Q is subjected to some conditions of regularity and
C(K, Q) is the capacity of K related to €. Here the notation x,~y,
(N — o) means that lim, _ . (x,/yy)=1. The proof of formula (5.1) is
obtained by extension of the methods of the paper [20] to the multidimen-
sional case using complex potential theory.

In the case when Q2 =G, is a canonical neighbourhood of a compact X
in C", formula (5.1) assumes the form

log dy(BH™(G ), C(K))~ —(n! N)logR  (R>1,N—>x) (52)

and can be derived from the multivariate Bernstein-Walsh theorem (see,
e.g., [15, Chap. 3]).
For p= o0, [=0, equality (1.5) gives

dy(BH*(BY), C(B"))=R *. (5.3)

Formula (5.3) is in agreement with (5.1) and (5.2), as N~ (n! N)"™
(N— ) and C(B", B%)= (2rn/log R)". By Proposition 4.1

dy(BH™(B), LY(v))< N~ "R~ (5.4)

for 1 <gq< 0.
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Problem. Comparing (5.4) with (5.1) and (5.3) it is natural to look for
conditions on K and Q, K< Q < C”, where

dy(BH*(Q), LK) =< N " exp(— Na), (5.5)

with 1 € ¢ < oo, 2 :=2r/(C(K, £2))'”. If n= 1 and the boundary @K consists
of a finite number of disjoint curves of bounded rotation, then formula
(5.5) can be proved (at least in case ¢ = o) by the methods considered in
[3, 7]. In both methods upper bounds are received by some modifications
of the classical Faber approximation. It is thus natural to ask which
methods will be used in the multidimensional case.
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